Муниципальное общеобразовательное учреждение «Кусинская средняя общеобразовательная школа»

Рассмотрено	Согласовано	«Утверждаю»
на заседании методического совета	Зам. директора по УВР	Директор МОУ «Кусинская СОШ»
Протокол № 1 от «22» августа 2016 г.	М.Е.Миронова	
	«23» августа 2016 г.	Приказ№130-о/д от«26»августа 2016 г
Принято		
на педагогическом совете		

Протокол №1 от «26» августа 2016 г.

Рабочая программа

По	математике	
Ступень обучения (класс)	среднее общее образование, 10 класс, 11 класс	
Уровень	базовый	
Количество часов по класса	10 класс – 136 часов, 11 класс – 136 часов	
Учитель Шутилина	а Светлана Николаевна	

1. Планируемые результаты изучения учебного предмета

В результате изучения математики на базовом уровне ученик должен знать/понимать

- 1. значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- 2. значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- 3. универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- 4. вероятностный характер различных процессов окружающего мира;

АЛГЕБРА

уметь

- 1. выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- 2. проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
- 3. вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
- 4. использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
 - практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

ФУНКЦИИ И ГРАФИКИ

уметь

- 1. определять значение функции по значению аргумента при различных способах задания функции;
- 2. строить графики изученных функций;
- 3. описывать по графику поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- 4. решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

уметь

- 1. вычислять производные и первообразные элементарных функций, используя справочные материалы;
- 2. исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших функций с использованием аппарата математического анализа;
- 3. вычислять в простейших случаях площади с использованием первообразной; использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

УРАВНЕНИЯ И НЕРАВЕНСТВА

уметь

- 1. решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
- 2. составлять уравнения по условию задачи;
- 3. использовать для приближенного решения уравнений и неравенств графический метод;
- 4. использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
 - построения и исследования простейших математических моделей;

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

уметь

- 1. решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
- 2. вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: анализа реальных числовых данных, представленных в виде диаграмм, графиков;

анализа информации статистического характера;

ГЕОМЕТРИЯ

уметь

- 1. распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- 2. описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- 3. анализировать в простейших случаях взаимное расположение объектов в пространстве;
- 4. изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
- 5. строить простейшие сечения куба, призмы, пирамиды;
- 6. решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- 7. использовать при решении стереометрических задач планиметрические факты и методы;
- 8. проводить доказательные рассуждения в ходе решения задач;
- 9. использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники.

Изучение математики в средней школе дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

- сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

в метапредметном направлении:

- представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
- сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий;

в предметном направлении на базовом уровне:

сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;

сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;

владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;

владение стандартными приёмами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;

сформированность представлений об основных понятиях, идеях и методах математического анализа;

владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;

сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;

владение навыками использования готовых компьютерных программ при решении задач;

2. Содержание учебного предмета

10 класс алгебра

1. Действительные числа (11 часов)

Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с рациональным и действительным показателями.

О с но в н а я ц е л ь — обобщить и систематизировать знания о действительных числах; сформировать понятие степени с действительным показателем; научить применять определения арифметического корня и степени, а также их свойства при выполнении вычислений и преобразовании выражений.

Необходимость расширения множества натуральных чисел до действительных мотивируется возможностью выполнять действия, обратные сложению, умножению и возведению в степень. Рассмотренный в начале темы способ обращения бесконечной периодической десятичной дроби в обыкновенную обосновывается свойствами сходящихся числовых рядов, в частности, нахождением суммы бесконечно убывающей геометрической прогрессии.

Действия над иррациональными числами строго не определяются а заменяются действиями над их приближенными значениями — рациональными числами.

В связи с рассмотрением последовательных рациональных приближений иррационального числа, а затем и степени с иррациональным показателем на интуитивном уровне вводится понятие предела последовательности.

Арифметический корень натуральной степени n > 2 из неотрицательного числа и его свойства излагаются традиционно. Учащиеся должны уметь вычислять значения корня с помощью определения и свойств и выполнять преобразования выражений, содержащих корни.

Степень с иррациональным показателем поясняется на конкретном примере. Здесь же формулируются свойства степени с действительным показателем, которые будут использоваться при решении уравнений, неравенств, исследовании функций.

2. Степенная функция (9 ЧАСОВ)

Степенная функция, ее свойства и график. Взаимно обратные функции. Равносильные уравнения и неравенства. Иррациональные уравнения. Иррациональные неравенства.

О с н о в н а я ц е л ь — обобщить и систематизировать известные из курса алгебры основной школы свойства функций; изучить свойства степенных функций с натуральным и целым показателями и научить применять их при решении уравнений и неравенств; сформировать понятие равносильности уравнений, неравенств, систем уравнений и неравенств.

Рассмотрение свойств степенных функций и их графиков проводится поэтапно, в зависимости от того, каким числом является показатель: 1) четным натуральным числом; 2) нечетным натуральным числом; 3) числом, противоположным четному числу; 4) числом, противоположным нечетному числу; 5) положительным нецелым числом; б) отрицательным нецелым числом (свойства функций в пп. 5 и 6 изучать необязательно).

Обоснования свойств степенной функции не проводятся, они следуют из свойств степени с действительным показателем Рассмотрение равносильности уравнений, неравенств

и систем уравнений и свойств равносильности проводятся

в связи с предстоящим изучением иррациональных уравнений и неравенств.

Основным методом решения иррациональных уравнений является возведение обеих частей уравнений в степень с целью перехода к рациональному уравнению-следствию данного.

Иррациональные неравенства не являются обязательными для изучения всеми учащимися. При их изучении основным способом решения является сведение неравенства к системе рациональных неравенств, равносильной данному неравенству.

3. Показательная функция (10 ЧАСОВ)

Показательная функция, её свойства и график. Показательные уравнения. . Показательные неравенства. Системы показательных уравнений и неравенств.

Основная цель-изучить свойства показательной функции ,научить решать показательные уравнения и неравенства, простейшие системы показательных уравнений и неравенств..

Свойства показательной функции полностью следуют из свойств степени с действительным показателем Решение простейших показательных уравнений Решение большинства показательных уравнений и неравенств сводится к решению простейших. Так как в ходе решения предлагаемых в этой теме показательных уравнений равносильность не нарушается, то проверка найденных корней необязательна. Здесь системы уравнений и неравенств решаются с помощью равносильных преобразований: подстановкой, сложением или умножением, заменой переменных и т. д.

4. Логарифмическая функция (14 ЧАСОВ)

Логарифмы. Свойства логарифмов. десятичные и натуральные логарифмы. логарифмическая функция, ее свойства и график. логарифмические уравнения. Логарифмические неравенства.

О с н о в н а я ц е л ь — сформировать понятие логарифма числа; научить применять свойства логарифмов при решении уравнений изучить свойства логарифмической функции и научить применять ее свойства при решении простейших логарифмических уравнений и неравенств.

До этой темы в курсе алгебры изучались такие функции, вычисление значений которых сводилось к четырем арифметическим действиям и возведению в степень. Для вычисления значений логарифмической функции нужно уметь находить логарифмы чисел, т. е. выполнять новое для учащихся действие — логарифмирование.

Доказательство свойств логарифма опирается на его определение. На практике рассматриваются логарифмы по различным основаниям, в частности по основанию 10 (десятичный логарифм) и по основанию е (натуральный логарифм), отсюда возникает необходимость формулы перехода от логарифма по одному основанию к логарифму по другому основанию. Так как на инженерном микрокалькуляторе есть клавиши 1g и ln, то для вычисления логарифма по основаниям, отличным от 10 и е, нужно применить формулу перехода.

Свойства логарифмической функции активно используются при решении логарифмических уравнений и неравенств.

Изучение свойств логарифмической функции проходит совместно с решением уравнений и неравенств.

При решении логарифмических уравнений и неравенств выполняются различные их преобразования. При этом часто нарушается равносильность .Поэтому при решении логарифмических уравнений необходима проверка найденных корней . .Поэтому при решении логарифмических неравенств нужно следить за тем ,чтобы равносильность не нарушалась ,так как проверку решения неравенства осуществить сложно,а в ряде случаев невозможно.

5. Тригонометрические формулы (21 ЧАС)

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом я тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов а и —а. Формулы сложения. Синус, косинус и тангенс двойного угла. Синус, косинус и тангенс половинного угла. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов.

О с н о в н а я ц е л ь - сформировать понятия синуса, косинуса, тангенса, котангенса числа; научить применять формулы тригонометрии для вычисления значений тригонометрических функций и выполнения преобразований тригонометрических выражений; научить решать простейшие тригонометрические уравнения $\sin x = a$, $\cos x = a$ при a = 1, -1, 0.

Рассматривая определения синуса и косинуса действительного числа а, естественно решить самые простые уравнения, в которых требуется найти число а, если синус или косинус его известен, например уравнения $\sin a = 0$, $\cos a = 1$ и т. п. Поскольку для обозначения неизвестного по традиции используется буква х, то эти уравнения записывают как обычно: $\sin x = 0$, $\cos x = 1$ и т. п. Решения этих уравнений находятся с помощью единичной окружности.

Возможность выявления знаков синуса, косинуса и тангенса по четвертям является следствием симметрии точек единичной окружности относительно осей координат. Равенство сов(—а) = сова следует из симметрии точек, соответствующих числам а и —а, относительно оси Ох.

Зависимость между синусом, косинусом, тангенсом и котангенсом одного и того же числа или угла следует из тригонометрической формы записи действительного числа и определения синуса и косинуса как координаты точки единичной окружности.

Формулы сложения доказываются для косинуса суммы или разности, все остальные формулы сложения получаются как следствия.

Формулы сложения являются основными формулами тригонометрии, так как все другие можно получить как следствия формулы двойного и половинного углов (не являются обязательными для изучения), формулы приведения, преобразования суммы и разности в произведение.

6. Тригонометрические уравнения (15 ЧАСОВ)

Уравнения $\cos x = a$, $\sin x = a$, tgx = a. Решение тригонометрических уравнений. Примеры решения простейших тригонометрических неравенств.

О с н о в н а я ц е л ь — сформировать умение решать простейшие тригонометрические уравнения ознакомить с некоторыми приемами решения тригонометрических уравнений.

Как и при решении алгебраических, показательных и логарифмических уравнений, решение тригонометрических уравнений путем различных преобразований сводится к решению простейших: cox = a, sinx = a, tgx = a.

Рассмотрение простейших уравнений начинается с уравнения сох = а, так как формула его корней проще, чем формула корней уравнения siпх = а Решение более сложных тригонометрических уравнений, когда выполняются алгебраические и тригонометрические преобразования, сводится к решению простейших.

Рассматриваются следующие типы тригонометрических уравнений линейные относительно sin x, cos x или tg x; сводящиеся к квадратным и другим алгебраическим уравнениям после замены неизвестного; сводящиеся к простейшим тригонометрическим уравнениям после разложения на множители.

7. Повторение и решение задач (6 часов).

11 класс

1. Повторение курса 10 класса (4 часа)

Основные цели:

• формирование представлений о целостности и непрерывности курса алгебры;

- овладение умением обобщения и систематизации знаний по основным темам курса алгебры 10 класса;
- развитие логического, математического мышления и интуиции, творческих способностей в области математики.

2. Производная и её геометрический смысл (15 часов)

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной. *Основные цели:*

- формирование понятий о мгновенной скорости, о касательной к плоской кривой, о касательной к графику функции, о производной функции, о физическом смысле производной, о геометрическом смысле производной, о скорости изменения функции, о пределе функции в точке, о дифференцировании, о производных элементарных функций;
- формирование умения использовать алгоритм нахождения производной элементарных функций простого и сложного аргумента;
- овладение умением находить производную любой комбинации элементарных функций;
- овладение навыками составления уравнения касательной к графику функции при дополнительных условиях, нахождения углового коэффициента касательной, точки касания.

3. Применение производной к исследованию функций (15 часов)

Возрастание и убывание функций. Экстремумы функции. Применение производной к построению графиков функций. Наибольшее и наименьшее значения функции. Выпуклость графика. Точки перегиба.

Основные цели:

- формирование представлений о промежутках возрастания и убывания функции, о достаточном условии возрастания функции, о промежутках монотонности функции, об окрестности точки, о точках максимума и минимума функции, о точках экстремума, о критических точках;
- формирование умения строить эскиз графика функции, если задан отрезок, значения функции на концах этого отрезка и знак производной в некоторых точках функции;
- овладение умением применять производную к исследованию функций и построению графиков;

• овладение навыками исследовать в простейших случаях функции на монотонность, находить наибольшее и наименьшее значения функций, точки перегиба и интервалы выпуклости.

4. Первообразная и интеграл (18 часов)

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.

Основные цели:

- формирование представлений о первообразной функции, о семействе первообразных, о дифференцировании и интегрировании, о таблице первообразных, о правилах отыскания первообразных;
- формирование умений находить для функции первообразную, график которой проходит через точку, заданную координатами;
- овладение умением находить площадь криволинейной трапеции, ограниченной графиками функций y = f(x) и y = g(x), ограниченной прямыми x = a. x = b, осью Ох и графиком y = h(x).

5. Элементы теории вероятности (8 часов)

Элементарные и сложные события. Рассмотрение случаев: вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применение вероятностных методов.

Основные цели:

- формирование представления о теории вероятности, о понятиях: вероятность, испытание, событие (невозможное и достоверное), вероятность событий, объединение и пересечение событий, следствие события, независимость событий;
- формирование умения вычислять вероятность событий, определять несовместные и противоположные события;
- овладение умением выполнять основные операции над событиями;
- овладение навыками решения практических задач с применением вероятностных методов.

6. Обобщающее повторение курса алгебры и начал анализа (12 часов)

Основные цели:

- обобщение и систематизация курса алгебры и начал анализа;
- создание условий для плодотворного участия в групповой работе, для формирования умения самостоятельно и мотивированно организовывать свою деятельность;

- формирование представлений об идеях и методах математики, о математике как средстве моделирования явлений и процессов;
- развитие логического и математического мышления, интуиции, творческих способностей;
- воспитание понимания значимости математики для общественного прогресса.

Геометрия 10 класс

1. Параллельность прямых и плоскостей. (16 ч).

Пересекающиеся, параллельные и скрещивающиеся прямые в пространстве. Классификация взаимного расположения двух прямых в пространстве. Признак скрещивающихся прямых. Параллельность прямой и плоскости в пространстве. Классификация взаимного расположения прямой и плоскости. Признак параллельности прямой и плоскости. Параллельность двух плоскостей. Классификация взаимного расположения двух плоскостей. Признак параллельности двух плоскостей. Признаки параллельности двух прямых в пространстве.

Основная цель—сформировать представления учащихся о понятии параллельности и о взаимном расположении прямых и плоскостей в пространстве, систематически изучить свойства параллельных прямых и плоскостей, познакомить с понятиями вектора, параллельного переноса, параллельного проектирования и научить изображать пространственные фигуры на плоскости в параллельной проекции.

В данной теме обобщаются известные из планиметрии сведения о параллельных прямых. Большую помощь при иллюстрации свойств параллельности и при решении задач могут оказать модели многогранников.

Здесь же учащиеся знакомятся с методом изображения пространственных фигур, основанном на параллельном проектировании, получают необходимые практические навыки по изображению пространственных фигур на плоскости. Для углубленного изучения могут служить задачи на построение сечений многогранников плоскостью.

2. Перпендикулярность прямых и плоскостей. (17 ч).

Угол между прямыми в пространстве. Перпендикулярность прямых. Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Ортогональное проектирование. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Линейный угол двугранного угла. Перпендикулярность плоскостей. Признак перпендикулярности двух плоскостей. Расстояние между точками, прямыми и плоскостями.

О с н о в н а я ц е л ь – сформировать представления учащихся о понятиях перпендикулярности прямых и плоскостей в пространстве, систематически изучить свойства перпендикулярных прямых и плоскостей, познакомить с понятием центрального проектирования и научить изображать пространственные фигуры на плоскости в центральной проекции.

В данной теме обобщаются планиметрии известные ИЗ сведения перпендикулярных Большую прямых. помощь при иллюстрации свойств перпендикулярности и при решении задач могут оказать модели многогранников.

В качестве дополнительного материала учащиеся знакомятся с методом изображения пространственных фигур, основанном на центральном проектировании. Они узнают, что центральное проектирование используется не только в геометрии, но и в живописи, фотографии и т.д., что восприятие человеком окружающих предметов посредством зрения осуществляется по законам центрального проектирования. Учащиеся получают необходимые практические навыки по изображению пространственных фигур на плоскости в центральной проекции.

3. Многогранники (12 ч).

Многогранные углы. Выпуклые многогранники и их свойства. Правильные многогранники.

Основная цель – познакомить учащихся с понятиями многогранного угла и выпуклого многогранника, рассмотреть теорему Эйлера и ее приложения к решению задач, сформировать представления о правильных, полуправильных и звездчатых многогранниках, показать проявления многогранников в природе в виде кристаллов.

Среди пространственных фигур особое значение имеют выпуклые фигуры и, в частности, выпуклые многогранники. Теорема Эйлера о числе вершин, ребер и граней выпуклого многогранника играет важную роль в различных областях математики и ее приложениях. При изучении правильных, полуправильных и звездчатых многогранников следует использовать модели этих многогранников, изготовление которых описано в учебнике, а также графические компьютерные средства.

4. Повторение (3ч).

Цель: повторить и обобщить материал, изученный в 10 классе.

11 класс

1. Координаты и векторы (17 часов)

Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Длина вектора в координатах, угол между векторами в координатах. Коллинеарные векторы, коллинеарность векторов в координатах.

2. Цилиндр, конус, шар (13 часов)

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.

3. Объемы тел (15 часов)

Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

4.Повторение (6 часов)

3. Тематическое планирование Алгебра 10-11 класс (172 часа)

Содержание материала	Количество часов	
	10 класс	11 класс
Действительные числа	11 часов	
Степенная функция	9 часов	
Показательная функция	10 часов	
Логарифмическая функция	14 часов	
Тригонометрические формулы	21 час	
Тригонометрические уравнения	15 часов	
Итоговое повторение	6 часов	
Повторение за 10 класс		4 часа
Первообразная		8 часов
Интеграл		10 часов
Обобщение понятия степени		12 часов
Показательная и логарифмическая функции		17 часов
Производная показательной и логарифмической		15 часов
функций		
Элементы теории вероятности		8 часов
Итоговое повторение		12 часов

Геометрия 10-11 класс (102 часа)

Содержание материала	Количество часов	
	10 класс	11 класс
Параллельности прямых и плоскостей	16 часов	
Перпендикулярности прямых и плоскостей	17 часов	
Многогранники	12 часов	
Итоговое повторение	3 часа	
Векторы в пространстве		6 часов
Методы координат в пространстве		11 часов
Цилиндр, конус, шар		13 часов
Объемы тел		15 часов
Итоговое повторение		6 часов